The Actual Science of Canine Male + Human Female gamete interactions

allyfitz

Esteemed Citizen of ZV
This is a post I originally posted at the AoZ forum thing several years ago before I stopped going there, because for some reason TOR was getting blocked all the time.

Anywho, this is a copy I have of what I posted. There's long been a discussion about women getting pregnant from dogs. IDK why this keeps coming back up. It's simply not possible. The people who claim its possible or that it 'might' be possible always come up with anecdotes or some very very stretched reasoning to back up their position.

While there are many threads along the same lines as this, this is specifically intended to serve as a thread for scientific discussion on the issue. Hopefully we can put this claim to bed once and for-all.

I would ask one thing from any participants in this thread. If you are going to make a claim about something... provide a source. You don't have to source every sentence you make, but if you're relying on some principle to back up your claim, you better do your damn diligence and have something to back it up.

I went into this knowing that a successful synthesis of a human ovum and a canine sperm is not possible. But my curiosity lies in how far it can get -before- it fails. I have a BS in Biology and I'm working on my Masters right now. I dont know everything... I'll admit there's a lot I dont know, but I when I want to know something, I try to research it and learn it.


Ok... so without further ado... Here's the original post: (With some basic grammar and spelling corrections)


The Science of Canine Male + Human Female gamete interactions

A look into the cellular mechanics behind canine sperm and human egg interactions.
Warning: Nerd alert - this is very science-y


Disclaimer: I'm a bio major and This has sort of been a pet research project for me for the past couple years. I have posted this elsewhere before, but I'm not sure how many places its been repeated. But lets get one thing crystal clear. It is impossible for a human to get pregnant by a dog. Anyone claiming otherwise is either outright lying or an idiot. It's definitely a fantasy of mine, not going to lie, but its 100% impossible.

Others will claim that the human egg and canine sperm will fuse and the single cell will live a few days before dying. This is also 100% impossible and a total lie. Due to chromosomal mismatch, a complete DNA strand cannot form, thus no viable living single cell at all.
My main point of researching this was to see if Canine sperm will do anything with the egg at all. If the proteins are not right the sperm will just wiggle around and try to do their thing. I'm curious if the sperm will chemically try to bond with the egg and breach the egg cell wall and try (and fail) to fuse with the egg nucleus. This is unknown and I haven't been able to find the necessary information to see if this can happen. Most likely there isn't enough research out there in the differences between all the human/canine proteins to know... so I'd need to actually take some canine sperm and a human egg and try artificial insemination and use an electron microscope to see what happens. But lets be real... that's never going to get approved at my university so I'm not even going to bother to ask. lol

Anywho, lets get on with this... by starting with how it works in a HS/HS situation:

Between humans, spermatozoa and oocyte fusion in the membrane adhesion area requires the presence of 3 membrane proteins (spermatozoa IZUMO1; oocyte receptor Juno and Cd9). The first one being the important one on the spermatozoa side, the latter on the oocyte side.

That would proceed as shown in the article image Source here: Image is missing, because of the repost

In Humans this ultimately leads to the formation of a zygote pronuclei as the Male and Female haploid nuclei approach each other and nuclear membranes break down.

After this then the DNA starts to bond together and divide into a multi cell blastocyst. If everything goes well this all happens within the first 24 hours.

So what would actually happen here biologically if it were K9 spermatozoa / HS oocyte? It’s obvious that a human female cannot get pregnant by a canine… but a canine’s spermatozoa don’t know where they are. Would Oocyte Activation ever occur and the intracellular machinery of the oocyte would try to process the DNA of the spermatozoa cell or not?

I assume the spermatozoa would attempt to fertilize the oocyte. With humans the spermatozoa have to sort of burrow their way in and then bond with the egg with certain proteins. Would canine spermatozoa be able to bind with the external layer of a human oocyte and attempt to fertilize the oocyte? That's what I want to determine.

This is the first question; would the k9 spermatozoa actually fuse with the oocyte? If it can’t then the rest of the discussion is pointless, but if it does, things are at least one step further down the path before failure. As I sated above, in humans it is the IZUMO1 protein that is important on the spermatozoa side. For more than obvious reasons I was unable to find any research into if the spermatozoa Human zona pellucida protein (ZP2) would effectively be a reciptor for the K9 spermatozoa. If Human ZP2 does not receive the k9 spermatozoa, then membrane fusion cannot occur.

I did find the following on page 317 tonight while reading https://books.google.com.ua/books?id=95XqDQAAQBAJprintsec=frontcover#v=onepageqf=false

It states that Dogs have a Izoumo1R gene, and that it’s located in a similar location as human spermatozoa. It states that it its plausible but untested that the purpose of IZUMO1 and JUNO in canines allows the spermatozoa to fuse with oocytes during fertilization like it does in Humans. Sadly the google books preview I found doesn’t have the pages surrounding that to get the rest of the context.

I have not yet found the breakdown of the differences in the IZUMO1 gene and the protein it codes for in Humans and the IZUMO1R gene in Canines. So this is where I will be focusing first. I’m not sure how much research has gone into Canine reproduction, so there may be no answers.
However, lets make sure we dont lose our grasp on reality, even if Oocyte activation is possible, a Canine/Human hybrid is not possible.

There is no way the embryo should be able to develop, since there is no way that the DNA could match up. Humans have 23 pairs of chromosomes, while Canines have 39. There is no way that the DNA would be able to be spliced together enough to create a viable cell that could even start to divide. By day 2 a properly fertilized oocyte is already a multi-cell blastocyst. Since Human and K9 DNA is not compatible, there is no way that it could reach this phase.

Binding of mammalian spermatozoa to the zona pellucida and the induction of the acrosome reaction are prerequisites for successful oocyte fertilization. The human oocyte coat, zona pellucida (ZP), is composed of four glycoproteins designated as zona pellucida glycoprotein (ZP1, ZP2, ZP, and ZP4) respectively. The zona proteins possess the archetypal ‘ZP domain’, a signature domain comprised of approximately 260 amino acid (aa) residues.
Mice which are used as the initial basis for fertitlity research for humans have 3 glycoproteins (ZP1, ZP2, and ZP3). The reason mice are used is that the similiarity in fertilization is very similar.

I have not seen much research into Canine/Human similarities, but I have found Canine/Mouse research.

We also know that canines are similar to Mice in that they have 3 glycoproteins, but they are (ZP2, ZP3, and ZP4. And research points to them having the same roles. Source: https://www.ncbi.nlm.nih.gov/pubmed/9361810
Anti-ZP3 vaccine for canines which reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


Since we already know that ZP3 in humans is similar to ZP3 in mice we can ~assume~ that there are similarities between Human and Canine CP3. This may in fact be false. Example is the following sets: {0,1}, {1,2}, {2,3} The 1st and 2nd set are similar, and the 2nd and 3rd are similar, however the 1st and 3rd are not. So they may be similiar or they may not be. I have yet to find enough research to prove this one way or the other.

When I search the Protein Data Bank, http://www.rcsb.org/pdb/explore/explore.do

I do find distinctions for ZP2 in mice, however for ZP3, all I find is “mammalian spermatozoa receptor ZP3”, I do not find any species specific ZP3 proteins. I have read in other research papers about the similarity of Human/Mouse ZP3, so this may be why there is not species specific protein data. However this does not mean that they are similar, it may mean that focused research has not been submitted on the specific species. Once again, the research is scant on the topic. Lack of evidence is not evidence of lacking.

There is some research pointing to the role of ZP1 in humans, but it’s not well studied. Studies suggest that the ‘ZP domain’ module of human ZP1 has functional activity and may have a role during fertilization in humans, but it’s extent is not known. Source: https://www.ncbi.nlm.nih.gov/pubmed/20831819

However in Humans, while all the ZP glycoproteins are responsible in some way for spermatozoa/ooctye fusion, the primary role is ZP2. In mice, this is somewhat different. In the mouse, ZP1 is the homodimeric filament crosslinker, held together by intermolecular disulphides. ZP2 is the ‘secondary receptor’, which is cleaved by oocyte proteases after oocyte activation. The mouse ZP3 protein appears to be the ‘primary receptor’, which is responsible for species-specific binding of spermatozoa to the oocyte and the induction of the acrosome reaction. Source: https://www.ncbi.nlm.nih.gov/pubmed/10526650


Information about ZP2 in mice:
Crystal structure of the ZP-N1 domain of mouse spermatozoa receptor ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5II6


Crystal structure of the ZP-C domain of mouse ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5BUP


With respect to Canines, Anti-ZP3 vaccine reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility in oocyte bonding is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


If things weren’t already confusing enough, it’s about to get worse. There has been research between Human spermatozoa and Mice Oocytes.

This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary spermatozoa receptor and ZP glycoprotein-2 (ZP2) as secondary spermatozoa receptor has been modified for spermatozoa/ooctye binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human spermatozoa. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human spermatozoa, suggesting that ZP2 might also play a role in spermatozoa/ooctye binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2.

Here is the key point: “In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4.” Source: https://www.ncbi.nlm.nih.gov/pubmed/25445843

So spermatozoa bonding in humans, by all the zpa Proteins, and we know that Canines do share three glycoproteins with each other. (though somewhat different due to gene expression)

So far I’ve been focusing on the oocyte side of things, one of these days I’m going to try to turn to the spermatozoa size soon.

I’ve heard a claim about proteins covering the oocyte determining what spermatozoa will fuse and fighting off other spermatozoa; but ive never seen it backed by research. Yes there is a protein coating around the oocyte, which spermatozoa have to bond with and burrow through. But it would make no sense for females oocytes to evolve to know how to deal with other species spermatozoa. At most (from what I have found) is that the Spermatozoa would not bond with the zona pellucida and would instead continue attempting to bond and fail. (Poor little fellas) But this happens all the time, spermatozoa’s are the smartest things in the book, they just swim till they bump into something and then keep bumping around till they finally get bonded with something.

Along with the ‘intellegent oocyte’ claim, I’ve already read online that the oocyte has an immunize system will ‘attack’ the hostile sperm. I’ve never read anything about this. What I have read is that the overall female reproductive track can exhibit preference for one sperm over another, as described in: https://academic.oup.com/beheco/article/10/3/304/201626

There has been some research on spermatozoa selection showing an anti-inbreeding bias in other animals. Source: http://onlinelibrary.wiley.com/doi/10.1111/jeb.12545/abstract

But again, I have not found any research stating that oocytes can determine the species of spermatozoa and attack non compatibles ones.


Somewhat related…

Sperm count in canines:
Total sperm/ejaculate: A bare minimum of 10 million/sperm/pound bodyweight (i.e. a 30# dog will have at least 300 million sperm). Most normal dogs exceed these numbers by 2‐3x or more.
Source: http://www.akcchf.org/educational-r.../Canine-Semen-Evaluation-Dr-Cheryl-Lopate.pdf

Sperm count in humans:
The sperm count in a normal semen analysis should be between 20 million to over 200 million.
Source: https://www.healthline.com/health/semen-analysis#normal-results


Additional information that came up in further discussion in another thread I had posted this in:


Some people will claim that the Human and Canine Zona Pellucida is mostly the same. No one has ever provided sources to back this up. If they exist I'd be interested to see them.

Some people will claim that a clump of cells will form but ultimately fail. This cannot possibly be true. The syntesis of human and canine DHA will not work.
Canines have ~19,000 genes encoded in their DNA., compared to around ~30,000 for humans.
Of the 19,000 reported canine genes, 14,200 represent 1-1-1 orthologs between dog, human, and mouse. Source: https://genome.cshlp.org/content/15/12/1706.full.html

You will not get a viable cell when that many genes will not be able to be formed because of issues.
While interbreeding is possible in the animal kingdom it is only possible when the species are close enough. An example of this is Horses, Donkeys, and Zebras. They are close enough genetically that they can interbreed. Humans and Dogs are not.

Some will claim that RH factor in blood will be the reason it fails. I always thought this was a cute argument to make. There is no point to even bring up Rh factor other than to sound smart and sciency. Rh Factor is irrelevant in this situation, because its only relevant when dealing with blood types mixing. That would require uterine implantation to actually occur and be viable. If Implantation doens't occur... no placenta can develop. If no placenta can develop... there can be no mixing of blood types. If there is no mixing of blood types... Rh Factor is irrelevant.
 
You will not get a viable cell when that many genes will not be able to be formed because of issues.
While interbreeding is possible in the animal kingdom it is only possible when the species are close enough. An example of this is Horses, Donkeys, and Zebras. They are close enough genetically that they can interbreed. Humans and Dogs are not.
I guarantee you that this paragraph does not exist and is physically invisible for certain users on this forum. :D
 
I guarantee you that this paragraph does not exist and is physically invisible for certain users on this forum. :D
You are no doubt correct in that claim. But those of us with a brain can read it... we can laugh amongst ourselves at their expense. ;)

This is amazing... thank you Ally
Glad you liked it. I have a bunch of other notes that I've made since I wrote that original post that I need to pull together and add to it. But I need to find that notebook so I can form it into logical thoughts clear enough to post online for others to read.
 
Okay Ally, you know my fetishes and my interest in human egg/canine sperm interactions.

I am trying to get all of this, the concepts are there but I can't seem to understand how far along... whatever gets. I know I am never having Max's pups, that was evident when I fucked Shady for a decade with nothing. However I just want to know what is exactly happening to my egg here.
 
This is a post I originally posted at the AoZ forum thing several years ago before I stopped going there, because for some reason TOR was getting blocked all the time.

Anywho, this is a copy I have of what I posted. There's long been a discussion about women getting pregnant from dogs. IDK why this keeps coming back up. It's simply not possible. The people who claim its possible or that it 'might' be possible always come up with anecdotes or some very very stretched reasoning to back up their position.

While there are many threads along the same lines as this, this is specifically intended to serve as a thread for scientific discussion on the issue. Hopefully we can put this claim to bed once and for-all.

I would ask one thing from any participants in this thread. If you are going to make a claim about something... provide a source. You don't have to source every sentence you make, but if you're relying on some principle to back up your claim, you better do your damn diligence and have something to back it up.

I went into this knowing that a successful synthesis of a human ovum and a canine sperm is not possible. But my curiosity lies in how far it can get -before- it fails. I have a BS in Biology and I'm working on my Masters right now. I dont know everything... I'll admit there's a lot I dont know, but I when I want to know something, I try to research it and learn it.


Ok... so without further ado... Here's the original post: (With some basic grammar and spelling corrections)


The Science of Canine Male + Human Female gamete interactions

A look into the cellular mechanics behind canine sperm and human egg interactions.
Warning: Nerd alert - this is very science-y


Disclaimer: I'm a bio major and This has sort of been a pet research project for me for the past couple years. I have posted this elsewhere before, but I'm not sure how many places its been repeated. But lets get one thing crystal clear. It is impossible for a human to get pregnant by a dog. Anyone claiming otherwise is either outright lying or an idiot. It's definitely a fantasy of mine, not going to lie, but its 100% impossible.

Others will claim that the human egg and canine sperm will fuse and the single cell will live a few days before dying. This is also 100% impossible and a total lie. Due to chromosomal mismatch, a complete DNA strand cannot form, thus no viable living single cell at all.
My main point of researching this was to see if Canine sperm will do anything with the egg at all. If the proteins are not right the sperm will just wiggle around and try to do their thing. I'm curious if the sperm will chemically try to bond with the egg and breach the egg cell wall and try (and fail) to fuse with the egg nucleus. This is unknown and I haven't been able to find the necessary information to see if this can happen. Most likely there isn't enough research out there in the differences between all the human/canine proteins to know... so I'd need to actually take some canine sperm and a human egg and try artificial insemination and use an electron microscope to see what happens. But lets be real... that's never going to get approved at my university so I'm not even going to bother to ask. lol

Anywho, lets get on with this... by starting with how it works in a HS/HS situation:

Between humans, spermatozoa and oocyte fusion in the membrane adhesion area requires the presence of 3 membrane proteins (spermatozoa IZUMO1; oocyte receptor Juno and Cd9). The first one being the important one on the spermatozoa side, the latter on the oocyte side.

That would proceed as shown in the article image Source here: Image is missing, because of the repost

In Humans this ultimately leads to the formation of a zygote pronuclei as the Male and Female haploid nuclei approach each other and nuclear membranes break down.

After this then the DNA starts to bond together and divide into a multi cell blastocyst. If everything goes well this all happens within the first 24 hours.

So what would actually happen here biologically if it were K9 spermatozoa / HS oocyte? It’s obvious that a human female cannot get pregnant by a canine… but a canine’s spermatozoa don’t know where they are. Would Oocyte Activation ever occur and the intracellular machinery of the oocyte would try to process the DNA of the spermatozoa cell or not?

I assume the spermatozoa would attempt to fertilize the oocyte. With humans the spermatozoa have to sort of burrow their way in and then bond with the egg with certain proteins. Would canine spermatozoa be able to bind with the external layer of a human oocyte and attempt to fertilize the oocyte? That's what I want to determine.

This is the first question; would the k9 spermatozoa actually fuse with the oocyte? If it can’t then the rest of the discussion is pointless, but if it does, things are at least one step further down the path before failure. As I sated above, in humans it is the IZUMO1 protein that is important on the spermatozoa side. For more than obvious reasons I was unable to find any research into if the spermatozoa Human zona pellucida protein (ZP2) would effectively be a reciptor for the K9 spermatozoa. If Human ZP2 does not receive the k9 spermatozoa, then membrane fusion cannot occur.

I did find the following on page 317 tonight while reading https://books.google.com.ua/books?id=95XqDQAAQBAJprintsec=frontcover#v=onepageqf=false

It states that Dogs have a Izoumo1R gene, and that it’s located in a similar location as human spermatozoa. It states that it its plausible but untested that the purpose of IZUMO1 and JUNO in canines allows the spermatozoa to fuse with oocytes during fertilization like it does in Humans. Sadly the google books preview I found doesn’t have the pages surrounding that to get the rest of the context.

I have not yet found the breakdown of the differences in the IZUMO1 gene and the protein it codes for in Humans and the IZUMO1R gene in Canines. So this is where I will be focusing first. I’m not sure how much research has gone into Canine reproduction, so there may be no answers.
However, lets make sure we dont lose our grasp on reality, even if Oocyte activation is possible, a Canine/Human hybrid is not possible.

There is no way the embryo should be able to develop, since there is no way that the DNA could match up. Humans have 23 pairs of chromosomes, while Canines have 39. There is no way that the DNA would be able to be spliced together enough to create a viable cell that could even start to divide. By day 2 a properly fertilized oocyte is already a multi-cell blastocyst. Since Human and K9 DNA is not compatible, there is no way that it could reach this phase.

Binding of mammalian spermatozoa to the zona pellucida and the induction of the acrosome reaction are prerequisites for successful oocyte fertilization. The human oocyte coat, zona pellucida (ZP), is composed of four glycoproteins designated as zona pellucida glycoprotein (ZP1, ZP2, ZP, and ZP4) respectively. The zona proteins possess the archetypal ‘ZP domain’, a signature domain comprised of approximately 260 amino acid (aa) residues.
Mice which are used as the initial basis for fertitlity research for humans have 3 glycoproteins (ZP1, ZP2, and ZP3). The reason mice are used is that the similiarity in fertilization is very similar.

I have not seen much research into Canine/Human similarities, but I have found Canine/Mouse research.

We also know that canines are similar to Mice in that they have 3 glycoproteins, but they are (ZP2, ZP3, and ZP4. And research points to them having the same roles. Source: https://www.ncbi.nlm.nih.gov/pubmed/9361810
Anti-ZP3 vaccine for canines which reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


Since we already know that ZP3 in humans is similar to ZP3 in mice we can ~assume~ that there are similarities between Human and Canine CP3. This may in fact be false. Example is the following sets: {0,1}, {1,2}, {2,3} The 1st and 2nd set are similar, and the 2nd and 3rd are similar, however the 1st and 3rd are not. So they may be similiar or they may not be. I have yet to find enough research to prove this one way or the other.

When I search the Protein Data Bank, http://www.rcsb.org/pdb/explore/explore.do

I do find distinctions for ZP2 in mice, however for ZP3, all I find is “mammalian spermatozoa receptor ZP3”, I do not find any species specific ZP3 proteins. I have read in other research papers about the similarity of Human/Mouse ZP3, so this may be why there is not species specific protein data. However this does not mean that they are similar, it may mean that focused research has not been submitted on the specific species. Once again, the research is scant on the topic. Lack of evidence is not evidence of lacking.

There is some research pointing to the role of ZP1 in humans, but it’s not well studied. Studies suggest that the ‘ZP domain’ module of human ZP1 has functional activity and may have a role during fertilization in humans, but it’s extent is not known. Source: https://www.ncbi.nlm.nih.gov/pubmed/20831819

However in Humans, while all the ZP glycoproteins are responsible in some way for spermatozoa/ooctye fusion, the primary role is ZP2. In mice, this is somewhat different. In the mouse, ZP1 is the homodimeric filament crosslinker, held together by intermolecular disulphides. ZP2 is the ‘secondary receptor’, which is cleaved by oocyte proteases after oocyte activation. The mouse ZP3 protein appears to be the ‘primary receptor’, which is responsible for species-specific binding of spermatozoa to the oocyte and the induction of the acrosome reaction. Source: https://www.ncbi.nlm.nih.gov/pubmed/10526650


Information about ZP2 in mice:
Crystal structure of the ZP-N1 domain of mouse spermatozoa receptor ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5II6


Crystal structure of the ZP-C domain of mouse ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5BUP


With respect to Canines, Anti-ZP3 vaccine reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility in oocyte bonding is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


If things weren’t already confusing enough, it’s about to get worse. There has been research between Human spermatozoa and Mice Oocytes.

This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary spermatozoa receptor and ZP glycoprotein-2 (ZP2) as secondary spermatozoa receptor has been modified for spermatozoa/ooctye binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human spermatozoa. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human spermatozoa, suggesting that ZP2 might also play a role in spermatozoa/ooctye binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2.

Here is the key point: “In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4.” Source: https://www.ncbi.nlm.nih.gov/pubmed/25445843

So spermatozoa bonding in humans, by all the zpa Proteins, and we know that Canines do share three glycoproteins with each other. (though somewhat different due to gene expression)

So far I’ve been focusing on the oocyte side of things, one of these days I’m going to try to turn to the spermatozoa size soon.

I’ve heard a claim about proteins covering the oocyte determining what spermatozoa will fuse and fighting off other spermatozoa; but ive never seen it backed by research. Yes there is a protein coating around the oocyte, which spermatozoa have to bond with and burrow through. But it would make no sense for females oocytes to evolve to know how to deal with other species spermatozoa. At most (from what I have found) is that the Spermatozoa would not bond with the zona pellucida and would instead continue attempting to bond and fail. (Poor little fellas) But this happens all the time, spermatozoa’s are the smartest things in the book, they just swim till they bump into something and then keep bumping around till they finally get bonded with something.

Along with the ‘intellegent oocyte’ claim, I’ve already read online that the oocyte has an immunize system will ‘attack’ the hostile sperm. I’ve never read anything about this. What I have read is that the overall female reproductive track can exhibit preference for one sperm over another, as described in: https://academic.oup.com/beheco/article/10/3/304/201626

There has been some research on spermatozoa selection showing an anti-inbreeding bias in other animals. Source: http://onlinelibrary.wiley.com/doi/10.1111/jeb.12545/abstract

But again, I have not found any research stating that oocytes can determine the species of spermatozoa and attack non compatibles ones.


Somewhat related…

Sperm count in canines:
Total sperm/ejaculate: A bare minimum of 10 million/sperm/pound bodyweight (i.e. a 30# dog will have at least 300 million sperm). Most normal dogs exceed these numbers by 2‐3x or more.
Source: http://www.akcchf.org/educational-r.../Canine-Semen-Evaluation-Dr-Cheryl-Lopate.pdf

Sperm count in humans:
The sperm count in a normal semen analysis should be between 20 million to over 200 million.
Source: https://www.healthline.com/health/semen-analysis#normal-results


Additional information that came up in further discussion in another thread I had posted this in:


Some people will claim that the Human and Canine Zona Pellucida is mostly the same. No one has ever provided sources to back this up. If they exist I'd be interested to see them.

Some people will claim that a clump of cells will form but ultimately fail. This cannot possibly be true. The syntesis of human and canine DHA will not work.
Canines have ~19,000 genes encoded in their DNA., compared to around ~30,000 for humans.
Of the 19,000 reported canine genes, 14,200 represent 1-1-1 orthologs between dog, human, and mouse. Source: https://genome.cshlp.org/content/15/12/1706.full.html

You will not get a viable cell when that many genes will not be able to be formed because of issues.
While interbreeding is possible in the animal kingdom it is only possible when the species are close enough. An example of this is Horses, Donkeys, and Zebras. They are close enough genetically that they can interbreed. Humans and Dogs are not.

Some will claim that RH factor in blood will be the reason it fails. I always thought this was a cute argument to make. There is no point to even bring up Rh factor other than to sound smart and sciency. Rh Factor is irrelevant in this situation, because its only relevant when dealing with blood types mixing. That would require uterine implantation to actually occur and be viable. If Implantation doens't occur... no placenta can develop. If no placenta can develop... there can be no mixing of blood types. If there is no mixing of blood types... Rh Factor is irrelevant.
Wow. I remember asking this question in science class once as a kid, but I never got an answer that good. That was a good read!
 
Thanks Ally. I have had this conversation with others, but I am not a biologist or anywhere even close, but just trying to get people to understand that our biologies, canines and us, are totally different and not compatible. Yes, of course, physically we work well together but try as we might, none of us are getting pregnant, no matter how hard we either try or wish it!

A really good post, and thank you. xx
 
Thanks Ally. I have had this conversation with others, but I am not a biologist or anywhere even close, but just trying to get people to understand that our biologies, canines and us, are totally different and not compatible. Yes, of course, physically we work well together but try as we might, none of us are getting pregnant, no matter how hard we either try or wish it!

A really good post, and thank you. xx
yeah but imagine IF we would get pregnant...there would be a lot of mixbreeds out there...for sure
 
Reading that post almost makes me worry about having to take birth control. :eek:
I hope you go to school and write a research paper on this some day, if you aren't doing that already. I'm sure everyone on zooville would love to read that. 🔭 Are there universities out there that would be willing to do that kind of research?
 
Last edited:
We already have pigs with human organs.
We don't, though. We have pigs that have been genetically modified with some genes knocked out in an attempt to make transplantable organs. It still doesn't work. The most recent test died after less than two months. They're still trying to figure out exactly what went wrong. One article I read a couple of months ago suggested that it was a virus (more careful sterilization and isolation needed), another suggested it was immunological incompatibility (more genetic modifications needed).

 
try artificial insemination and use an electron microscope to see what happens.
Why an electron microscope? These are large enough cells that you should be able to see at least whether a canine sperm cell penetrates the egg, no?

Or, even simpler, mix human egg and dog sperm for a while, long enough so that if something were going to happen then it would have, then use washing and a pipette to pull just the egg out and run PCR to see if there is any canine DNA.

Bonus, try to figure out how many different doggy sperm cells penetrated the egg, to see if more than one did. If you find zero canine chromosomes, then none did; if you find one half-set from the dog, then it worked as normal; if you find multiple pairs of dog chromosomes then you know the sperm aren't respecting the signaling and are gang-banging the egg.
 
Why an electron microscope? These are large enough cells that you should be able to see at least whether a canine sperm cell penetrates the egg, no?

My thought was to be able to see more of what was actually going on. I wasn't thinking one of the latest high tech EM systems out there. But one of the older ones that I could get access to. Also would end up with better pictures. lol

Or, even simpler, mix human egg and dog sperm for a while, long enough so that if something were going to happen then it would have, then use washing and a pipette to pull just the egg out and run PCR to see if there is any canine DNA.

But the main problem would be sourcing a human egg... as I mentioned I've got my own... but they're a little hard to get to. lol


Bonus, try to figure out how many different doggy sperm cells penetrated the egg, to see if more than one did. If you find zero canine chromosomes, then none did; if you find one half-set from the dog, then it worked as normal; if you find multiple pairs of dog chromosomes then you know the sperm aren't respecting the signaling and are gang-banging the egg.
giphy.gif
 
Last edited:
This is a post I originally posted at the AoZ forum thing several years ago before I stopped going there, because for some reason TOR was getting blocked all the time.

Anywho, this is a copy I have of what I posted. There's long been a discussion about women getting pregnant from dogs. IDK why this keeps coming back up. It's simply not possible. The people who claim its possible or that it 'might' be possible always come up with anecdotes or some very very stretched reasoning to back up their position.

While there are many threads along the same lines as this, this is specifically intended to serve as a thread for scientific discussion on the issue. Hopefully we can put this claim to bed once and for-all.

I would ask one thing from any participants in this thread. If you are going to make a claim about something... provide a source. You don't have to source every sentence you make, but if you're relying on some principle to back up your claim, you better do your damn diligence and have something to back it up.

I went into this knowing that a successful synthesis of a human ovum and a canine sperm is not possible. But my curiosity lies in how far it can get -before- it fails. I have a BS in Biology and I'm working on my Masters right now. I dont know everything... I'll admit there's a lot I dont know, but I when I want to know something, I try to research it and learn it.


Ok... so without further ado... Here's the original post: (With some basic grammar and spelling corrections)


The Science of Canine Male + Human Female gamete interactions

A look into the cellular mechanics behind canine sperm and human egg interactions.
Warning: Nerd alert - this is very science-y


Disclaimer: I'm a bio major and This has sort of been a pet research project for me for the past couple years. I have posted this elsewhere before, but I'm not sure how many places its been repeated. But lets get one thing crystal clear. It is impossible for a human to get pregnant by a dog. Anyone claiming otherwise is either outright lying or an idiot. It's definitely a fantasy of mine, not going to lie, but its 100% impossible.

Others will claim that the human egg and canine sperm will fuse and the single cell will live a few days before dying. This is also 100% impossible and a total lie. Due to chromosomal mismatch, a complete DNA strand cannot form, thus no viable living single cell at all.
My main point of researching this was to see if Canine sperm will do anything with the egg at all. If the proteins are not right the sperm will just wiggle around and try to do their thing. I'm curious if the sperm will chemically try to bond with the egg and breach the egg cell wall and try (and fail) to fuse with the egg nucleus. This is unknown and I haven't been able to find the necessary information to see if this can happen. Most likely there isn't enough research out there in the differences between all the human/canine proteins to know... so I'd need to actually take some canine sperm and a human egg and try artificial insemination and use an electron microscope to see what happens. But lets be real... that's never going to get approved at my university so I'm not even going to bother to ask. lol

Anywho, lets get on with this... by starting with how it works in a HS/HS situation:

Between humans, spermatozoa and oocyte fusion in the membrane adhesion area requires the presence of 3 membrane proteins (spermatozoa IZUMO1; oocyte receptor Juno and Cd9). The first one being the important one on the spermatozoa side, the latter on the oocyte side.

That would proceed as shown in the article image Source here: Image is missing, because of the repost

In Humans this ultimately leads to the formation of a zygote pronuclei as the Male and Female haploid nuclei approach each other and nuclear membranes break down.

After this then the DNA starts to bond together and divide into a multi cell blastocyst. If everything goes well this all happens within the first 24 hours.

So what would actually happen here biologically if it were K9 spermatozoa / HS oocyte? It’s obvious that a human female cannot get pregnant by a canine… but a canine’s spermatozoa don’t know where they are. Would Oocyte Activation ever occur and the intracellular machinery of the oocyte would try to process the DNA of the spermatozoa cell or not?

I assume the spermatozoa would attempt to fertilize the oocyte. With humans the spermatozoa have to sort of burrow their way in and then bond with the egg with certain proteins. Would canine spermatozoa be able to bind with the external layer of a human oocyte and attempt to fertilize the oocyte? That's what I want to determine.

This is the first question; would the k9 spermatozoa actually fuse with the oocyte? If it can’t then the rest of the discussion is pointless, but if it does, things are at least one step further down the path before failure. As I sated above, in humans it is the IZUMO1 protein that is important on the spermatozoa side. For more than obvious reasons I was unable to find any research into if the spermatozoa Human zona pellucida protein (ZP2) would effectively be a reciptor for the K9 spermatozoa. If Human ZP2 does not receive the k9 spermatozoa, then membrane fusion cannot occur.

I did find the following on page 317 tonight while reading https://books.google.com.ua/books?id=95XqDQAAQBAJprintsec=frontcover#v=onepageqf=false

It states that Dogs have a Izoumo1R gene, and that it’s located in a similar location as human spermatozoa. It states that it its plausible but untested that the purpose of IZUMO1 and JUNO in canines allows the spermatozoa to fuse with oocytes during fertilization like it does in Humans. Sadly the google books preview I found doesn’t have the pages surrounding that to get the rest of the context.

I have not yet found the breakdown of the differences in the IZUMO1 gene and the protein it codes for in Humans and the IZUMO1R gene in Canines. So this is where I will be focusing first. I’m not sure how much research has gone into Canine reproduction, so there may be no answers.
However, lets make sure we dont lose our grasp on reality, even if Oocyte activation is possible, a Canine/Human hybrid is not possible.

There is no way the embryo should be able to develop, since there is no way that the DNA could match up. Humans have 23 pairs of chromosomes, while Canines have 39. There is no way that the DNA would be able to be spliced together enough to create a viable cell that could even start to divide. By day 2 a properly fertilized oocyte is already a multi-cell blastocyst. Since Human and K9 DNA is not compatible, there is no way that it could reach this phase.

Binding of mammalian spermatozoa to the zona pellucida and the induction of the acrosome reaction are prerequisites for successful oocyte fertilization. The human oocyte coat, zona pellucida (ZP), is composed of four glycoproteins designated as zona pellucida glycoprotein (ZP1, ZP2, ZP, and ZP4) respectively. The zona proteins possess the archetypal ‘ZP domain’, a signature domain comprised of approximately 260 amino acid (aa) residues.
Mice which are used as the initial basis for fertitlity research for humans have 3 glycoproteins (ZP1, ZP2, and ZP3). The reason mice are used is that the similiarity in fertilization is very similar.

I have not seen much research into Canine/Human similarities, but I have found Canine/Mouse research.

We also know that canines are similar to Mice in that they have 3 glycoproteins, but they are (ZP2, ZP3, and ZP4. And research points to them having the same roles. Source: https://www.ncbi.nlm.nih.gov/pubmed/9361810
Anti-ZP3 vaccine for canines which reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


Since we already know that ZP3 in humans is similar to ZP3 in mice we can ~assume~ that there are similarities between Human and Canine CP3. This may in fact be false. Example is the following sets: {0,1}, {1,2}, {2,3} The 1st and 2nd set are similar, and the 2nd and 3rd are similar, however the 1st and 3rd are not. So they may be similiar or they may not be. I have yet to find enough research to prove this one way or the other.

When I search the Protein Data Bank, http://www.rcsb.org/pdb/explore/explore.do

I do find distinctions for ZP2 in mice, however for ZP3, all I find is “mammalian spermatozoa receptor ZP3”, I do not find any species specific ZP3 proteins. I have read in other research papers about the similarity of Human/Mouse ZP3, so this may be why there is not species specific protein data. However this does not mean that they are similar, it may mean that focused research has not been submitted on the specific species. Once again, the research is scant on the topic. Lack of evidence is not evidence of lacking.

There is some research pointing to the role of ZP1 in humans, but it’s not well studied. Studies suggest that the ‘ZP domain’ module of human ZP1 has functional activity and may have a role during fertilization in humans, but it’s extent is not known. Source: https://www.ncbi.nlm.nih.gov/pubmed/20831819

However in Humans, while all the ZP glycoproteins are responsible in some way for spermatozoa/ooctye fusion, the primary role is ZP2. In mice, this is somewhat different. In the mouse, ZP1 is the homodimeric filament crosslinker, held together by intermolecular disulphides. ZP2 is the ‘secondary receptor’, which is cleaved by oocyte proteases after oocyte activation. The mouse ZP3 protein appears to be the ‘primary receptor’, which is responsible for species-specific binding of spermatozoa to the oocyte and the induction of the acrosome reaction. Source: https://www.ncbi.nlm.nih.gov/pubmed/10526650


Information about ZP2 in mice:
Crystal structure of the ZP-N1 domain of mouse spermatozoa receptor ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5II6


Crystal structure of the ZP-C domain of mouse ZP2: http://www.rcsb.org/pdb/explore/explore.do?structureId=5BUP


With respect to Canines, Anti-ZP3 vaccine reduces fertility in canines, has been shown to reduce fertility in mice. This suggests that ZP3 responsibility in oocyte bonding is similar between canines and mice. Source: https://www.ncbi.nlm.nih.gov/pubmed/27667457


If things weren’t already confusing enough, it’s about to get worse. There has been research between Human spermatozoa and Mice Oocytes.

This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary spermatozoa receptor and ZP glycoprotein-2 (ZP2) as secondary spermatozoa receptor has been modified for spermatozoa/ooctye binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human spermatozoa. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human spermatozoa, suggesting that ZP2 might also play a role in spermatozoa/ooctye binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2.

Here is the key point: “In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4.” Source: https://www.ncbi.nlm.nih.gov/pubmed/25445843

So spermatozoa bonding in humans, by all the zpa Proteins, and we know that Canines do share three glycoproteins with each other. (though somewhat different due to gene expression)

So far I’ve been focusing on the oocyte side of things, one of these days I’m going to try to turn to the spermatozoa size soon.

I’ve heard a claim about proteins covering the oocyte determining what spermatozoa will fuse and fighting off other spermatozoa; but ive never seen it backed by research. Yes there is a protein coating around the oocyte, which spermatozoa have to bond with and burrow through. But it would make no sense for females oocytes to evolve to know how to deal with other species spermatozoa. At most (from what I have found) is that the Spermatozoa would not bond with the zona pellucida and would instead continue attempting to bond and fail. (Poor little fellas) But this happens all the time, spermatozoa’s are the smartest things in the book, they just swim till they bump into something and then keep bumping around till they finally get bonded with something.

Along with the ‘intellegent oocyte’ claim, I’ve already read online that the oocyte has an immunize system will ‘attack’ the hostile sperm. I’ve never read anything about this. What I have read is that the overall female reproductive track can exhibit preference for one sperm over another, as described in: https://academic.oup.com/beheco/article/10/3/304/201626

There has been some research on spermatozoa selection showing an anti-inbreeding bias in other animals. Source: http://onlinelibrary.wiley.com/doi/10.1111/jeb.12545/abstract

But again, I have not found any research stating that oocytes can determine the species of spermatozoa and attack non compatibles ones.


Somewhat related…

Sperm count in canines:
Total sperm/ejaculate: A bare minimum of 10 million/sperm/pound bodyweight (i.e. a 30# dog will have at least 300 million sperm). Most normal dogs exceed these numbers by 2‐3x or more.
Source: http://www.akcchf.org/educational-r.../Canine-Semen-Evaluation-Dr-Cheryl-Lopate.pdf

Sperm count in humans:
The sperm count in a normal semen analysis should be between 20 million to over 200 million.
Source: https://www.healthline.com/health/semen-analysis#normal-results


Additional information that came up in further discussion in another thread I had posted this in:


Some people will claim that the Human and Canine Zona Pellucida is mostly the same. No one has ever provided sources to back this up. If they exist I'd be interested to see them.

Some people will claim that a clump of cells will form but ultimately fail. This cannot possibly be true. The syntesis of human and canine DHA will not work.
Canines have ~19,000 genes encoded in their DNA., compared to around ~30,000 for humans.
Of the 19,000 reported canine genes, 14,200 represent 1-1-1 orthologs between dog, human, and mouse. Source: https://genome.cshlp.org/content/15/12/1706.full.html

You will not get a viable cell when that many genes will not be able to be formed because of issues.
While interbreeding is possible in the animal kingdom it is only possible when the species are close enough. An example of this is Horses, Donkeys, and Zebras. They are close enough genetically that they can interbreed. Humans and Dogs are not.

Some will claim that RH factor in blood will be the reason it fails. I always thought this was a cute argument to make. There is no point to even bring up Rh factor other than to sound smart and sciency. Rh Factor is irrelevant in this situation, because its only relevant when dealing with blood types mixing. That would require uterine implantation to actually occur and be viable. If Implantation doens't occur... no placenta can develop. If no placenta can develop... there can be no mixing of blood types. If there is no mixing of blood types... Rh Factor is irrelevant.
you should buy a personal microscope and do an experiment in your room. with sperm from a dog and an egg donor. but extracting an egg is not easy to take. it takes an experienced doctor. and finding an egg donor is not easy .. maybe with some money donation ..
 
you should buy a personal microscope and do an experiment in your room. with sperm from a dog and an egg donor. but extracting an egg is not easy to take. it takes an experienced doctor. and finding an egg donor is not easy .. maybe with some money donation ..
Yea finding a doctor to do private egg extraction is not going to be realistic... if it were I'd have already done it on myself.
 
They are close enough genetically that they can interbreed. Humans and Dogs are not.

Nonsense! I've inter-bred with dogs! Sure, they never got pregnant, but damn if we didn't try! 😁
Probably a good thing, though. The last thing I need is litter upon litter of mutant human-puppy mouths to feed.
 
Perché un microscopio elettronico? Queste sono cellule abbastanza grandi che dovresti essere in grado di vedere almeno se uno spermatozoo canino penetra nell'uovo, no?

Oppure, ancora più semplice, mescola l'uovo umano e lo sperma di cane per un po', abbastanza a lungo in modo che se dovesse succedere qualcosa sarebbe successo, quindi usa il lavaggio e una pipetta per estrarre solo l'uovo ed esegui la PCR per vedere se c'è qualsiasi DNA canino.

Bonus, prova a capire quanti diversi spermatozoi cagnolini sono penetrati nell'uovo, per vedere se più di uno lo ha fatto. Se trovi zero cromosomi canini, nessuno lo ha fatto; se trovi un mezzo set dal cane, allora ha funzionato normalmente; se trovi più coppie di cromosomi di cane, allora sai che lo sperma non rispetta la segnalazione e sta facendo gang bang dell'uovo.
lo sperma è troppo piccolo. Non è visibile all'occhio umano. serve un microscopio.
 
This is the kinda thing that gets me thinking really, I’ve always fantasied about the science behind it and when I have gotten fucked my mind always goes to the idea that they would somehow fertilize an egg even if it would fail. It’s the big part of enjoying it.
 
I wonder what would happen if you inserted a fertilized canine egg into a human woman’s uterus. I figure the human body would recognize it as foreign and reject it immediately. But, like in the case of human organ transplant recipients, what if you took the right meds that could suppress the rejection instinct of the body?
 
I wonder what would happen if you inserted a fertilized canine egg into a human woman’s uterus. I figure the human body would recognize it as foreign and reject it immediately. But, like in the case of human organ transplant recipients, what if you took the right meds that could suppress the rejection instinct of the body?

Maybe you might be able to… But you’d also have to change your life completely and would be at serious risk of disease or death. Immunosuppressants are NOT something you take lightly. You have to give up a lot of things.
 
Why an electron microscope? These are large enough cells that you should be able to see at least whether a canine sperm cell penetrates the egg, no?
Which doesn't even take into consideration the concept that putting something - ANYTHING - alive into an electron microscope kills it. (assuming it isn't made dead as part of the preparation process) Nothing living that I've ever heard of (with the possible exception of "ready for it" tardigrades, and even that's questionable) survives more than momentary exposure to hard vacuum. What's that got to do with electron microscopes? Simple: an electron microscope that isn't pumped down to a hard vacuum is incapable of functioning - exactly the same way a vacuum tube is incapable of functioning if it isn't (wait for it) under vacuum!
 
I've been arguing against this nonsense for years. There's no evidence that canine sperm can get past the ZP to even get inside the egg, the entire purpose of the ZP is to be a barrier to entry and that's just the first obstacle. There are some examples of animals who's ZP is non-functional, such as the golden hamster, but those are notable exceptions and not the rule.

As for microscopic examination, @UR20Z is correct that any version of the electron microscope is going to require killing and fixing the sample. Sperm and eggs are quite large and easily visible under the typical light microscope; even ones well over 100 years old.

In decades of asking for anyone to provide even a shred of evidence for the claim that canine sperm can even enter a human egg I've been provided nothing even remotely valid. I've had a few try, but it was painfully obvious they didn't even read what they offered and certainly didn't understand it.
 
This is the kinda thing that gets me thinking really, I’ve always fantasied about the science behind it and when I have gotten fucked my mind always goes to the idea that they would somehow fertilize an egg even if it would fail. It’s the big part of enjoying it.
I love the idea of having a female be bred by the pack in the hopes she gives us a litter of our own, and that would then nurse from her and later enjoy her too.
 
Note this is purely anecdotal, as I don't have a source to back it up other than "my old domme is the person in question" but I figured it'd be of interest to you


So my old domme had a helluva breeding kink. Like dozens of men came inside her, often on a free use basis. She never once had a pregnancy scare in spite of not using birth control.

She chalks this up to regularly getting bred by her dog, typically if not on a daily basis than every other day.

Her hypothesis was that her dogs semen reached and fertilized the egg first, making it so that nothing else could even if at that point it's just a dead egg as nothing else would happen.

She used to laugh and say that if meant her dog just cucked all her other partners 😂

But anyways definitely a "good luck ever researching that" thing 😂
 
Note this is purely anecdotal, as I don't have a source to back it up other than "my old domme is the person in question" but I figured it'd be of interest to you


So my old domme had a helluva breeding kink. Like dozens of men came inside her, often on a free use basis. She never once had a pregnancy scare in spite of not using birth control.

She chalks this up to regularly getting bred by her dog, typically if not on a daily basis than every other day.

Her hypothesis was that her dogs semen reached and fertilized the egg first, making it so that nothing else could even if at that point it's just a dead egg as nothing else would happen.

She used to laugh and say that if meant her dog just cucked all her other partners 😂

But anyways definitely a "good luck ever researching that" thing 😂
TBH that sounds more like infertility rather than good luck.
 
I've always wondered if a human could get an animal with the closest DNA to our to have a baby or have there baby
 
Back
Top